PL + HCI:
Analysis authoring tools for statistical non-experts
Hi, I'm Eunice Jun. I'm a PhD in CS at the University of Washington. I develop new languages and interfaces for analyzing data. I hope you will, too. It's nice to meet you. I can help!
Two lenses:

#1.
Programs are UIs.
Programming is HCI.
Software professionals | CSEd teachers | CSEd students | End-users, “non-traditional” coders

Programmers
Two lenses:

#1.
Programs are UIs.
Programming is HCI.

#2.
PL = Representation
HCI = Interaction
Outline

- Initial needfinding
- **Hypothesis formalization** (empirical work + theory building)
- **Tea** (system)
- **Tisane** (system)
- Discussion
Needfinding: Story time!
Research question

Study design

- Statistical hypothesis

- Statistical test

- API

Outcomes

Conclusions
e.g.) `t.test(x, y=NULL, alternative = c("two.sided", "less", "greater"), mu = 0, paired = FALSE, var.equal = FALSE, ...)`

Research question

Conclusions

Study design

Statistical hypothesis

Outcomes

Statistical test

API

Some support
Research question → Study design → Statistical hypothesis → Statistical test → Outcomes → Conclusions

- e.g. t.test(x, y=NULL, alternative = c("two.sided", "less", "greater"), mu = 0, paired = FALSE, var.equal = FALSE, ...)
- Incorrect test, wrong conclusion
- up to the user
- low-level
- high-level
- some support
Hypothesis Formalization:
Empirical Findings, Software Limitations, and Design Implications
Research questions

• RQ1: What is the range of steps an analyst might consider when formalizing a hypothesis? How do these steps compare to ones that we might expect based on prior work?

• RQ2: How do analysts think about and perform the steps?

• RQ3: How might current software tools influence hypothesis formalization?
RQ1: Steps to formalize hypotheses

Prior work on data analysis theory + practice
RQ1: Steps to formalize hypotheses

Prior work

- Conceptual Hypothesis
- Causal Model
- Dataset
- Observations about Data
- Statistical Specification (unspecified, mathematics and computation are implied)

Prior work on data analysis theory + practice

- Schunn & Klahr 4-space model of scientific discovery
RQ1: Steps to formalize hypotheses

Prior work

Prior work on data analysis theory + practice

Schunn & Klahr 4-space model of scientific discovery
Research questions

• RQ1: What is the range of steps an analyst might consider when formalizing a hypothesis? How do these steps compare to ones that we might expect based on prior work?

• RQ2: How do analysts think about and perform the steps?

• RQ3: How might current software tools influence hypothesis formalization?
Content Analysis Findings

Conceptual Hypothesis

Sub-hypotheses

Proxy Variables

Causal Model

Dataset

Model Implementation

Hypothesis Refinement
Content Analysis Findings

Prior work on data analysis theory + practice

Limitation: Scientific narrative bias
Research questions

• RQ1: What is the range of steps an analyst might consider when formalizing a hypothesis? How do these steps compare to ones that we might expect based on prior work?

• RQ2: How do analysts think about and perform the steps?

• RQ3: How might current software tools influence hypothesis formalization?
Lab study

• 24 participants

• 3 part study
 • “What aspects of an individual’s background and demographics are associated with income after they have graduated from high school?”
 • Hypotheses
 • Conceptual models
 • Statistical model specification

• Implement

• Reflect
Key findings

• Consider proxies and data collection while articulating hypotheses.

• Consider **implementation and tools** when specifying statistical models.
Focus on implementation and tools

Create new variables:

- \(\text{Adj_annual_income} \): take the midpoint of the ranges in the Annual Income column as a numeric value. (numeric)
- \(\text{State_avg_income} \): find the average income of individuals in each state from established benchmarks. (numeric)
- \(\text{Income_over_avg} \): take the difference between each individual's income with the average for their state.

Testing Major vs Income: take all rows with a college degree (2 year associate and up) & major. Omit rows with no info on income.

For each major, calculate the average \(\text{Adj_annual_income} \).

Also, calculate the average \(\text{Adj_annual_income} \) for all the college rows from above.

Create a set of histograms (one for each major) showing the spread of \(\text{Adj_annual_income} \) for the people in that group. The histograms should share the same x axis. The bins will be normalized to sum to 100% for each major group.

Arrange the data like so

<table>
<thead>
<tr>
<th>Major</th>
<th>Avg Income (within major)</th>
<th>Avg income (sample population)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bio</td>
<td>####</td>
<td>####</td>
</tr>
<tr>
<td>Stats</td>
<td>####</td>
<td>####</td>
</tr>
<tr>
<td>etc.</td>
<td>####</td>
<td>####</td>
</tr>
</tbody>
</table>

Chi-squared test.

- \(H_0 \): for each major group, the average income is equal to the entire sample population's average income. That is, no single group has a significant difference in avg income from the sample population.
- \(H_A \): at least one of the major groups has an average income that's significantly different from the sample population.

Test for a p-value <= 0.05

One caveat of our selected test is even if we are able to reject \(H_0 \), we can't make conclusions about which major group is the one making the different. It's possible that just one group is; it's possible that every group is significantly different from the population with large.
Key findings

• Consider proxies and data collection while articulating hypotheses.
• Consider **implementation and tools** when specifying statistical models.
• Fit analyses to previous projects and **familiar approaches**.
Fit to familiar approaches

“I usually tend to jump...to look at data and match [the analysis problem] with similar patterns I have seen in the past and start implementing that or do some rough diagrams [for thinking about parameters, data type, and implementation] on paper...and start implementing it.”

“I feel like having non normal data is something that’s like hard for us to deal with. Like it just kind of messes everything up like....we tend to try really hard to get our variables to be normally distributed. So, you know, we might like transform it or, you know, kind of clean it like clean outliers, maybe transform if needed..."
Key findings

- Consider proxies and data collection while articulating hypotheses.
- Consider **implementation and tools** when specifying statistical models.
- Fit analyses to previous projects and **familiar approaches**.
- Try to minimize their biases by focusing on data.
Key findings

• Consider proxies and data collection while articulating hypotheses.
• Consider implementation and tools when specifying statistical models.
• Fit analyses to previous projects and familiar approaches.
• Try to minimize their biases by focusing on data.
• Face challenges obtaining and integrating conceptual and statistical information.
Research questions

• RQ1: What is the range of steps an analyst might consider when formalizing a hypothesis? How do these steps compare to ones that we might expect based on prior work?

• RQ2: How do analysts think about and perform the steps?

• RQ3: How might current software tools influence hypothesis formalization?
Tools analysis

• 20 tools

• Focus on
 • Specialization and Scope
 • Model Expression
 • Computational Control
 • Statistical Taxonomies

<table>
<thead>
<tr>
<th>ID</th>
<th>Tool name</th>
<th>R Packages</th>
<th>Specialized Scope</th>
<th>Mathematical Notation</th>
<th>Computational Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>MASS</td>
<td>—</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>brms</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td>edgeR</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>glmmTMB</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>T5</td>
<td>glmnet</td>
<td>✓</td>
<td>—</td>
<td>✓(additional)</td>
<td></td>
</tr>
<tr>
<td>T6</td>
<td>lme4</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>T7</td>
<td>MCMCglmm</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>T8</td>
<td>nlme</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>T9</td>
<td>RandomForest</td>
<td>✓</td>
<td>✓</td>
<td>✓(minimal)</td>
<td></td>
</tr>
<tr>
<td>T10</td>
<td>stats (core library)</td>
<td>—</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

Python Packages

<table>
<thead>
<tr>
<th>ID</th>
<th>Tool name</th>
<th>R Packages</th>
<th>Specialized Scope</th>
<th>Mathematical Notation</th>
<th>Computational Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>T11</td>
<td>Keras</td>
<td>✓</td>
<td>—</td>
<td>✓(minimal)</td>
<td></td>
</tr>
<tr>
<td>T12</td>
<td>Scikit-learn</td>
<td>✓</td>
<td>—</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>T13</td>
<td>Scipy (scipy.stats)</td>
<td>—</td>
<td>—</td>
<td>✓(additional)</td>
<td></td>
</tr>
<tr>
<td>T14</td>
<td>Statsmodels</td>
<td>—</td>
<td>✓</td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>

Suites, with DSLs for programming

<table>
<thead>
<tr>
<th>ID</th>
<th>Tool name</th>
<th>R Packages</th>
<th>Specialized Scope</th>
<th>Mathematical Notation</th>
<th>Computational Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>T15</td>
<td>Matlab (Statistics and ML Toolbox)</td>
<td>—</td>
<td>—</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>T16</td>
<td>SPSS</td>
<td>—</td>
<td>✓</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>T17</td>
<td>Stata</td>
<td>—</td>
<td>✓</td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>

Suites, without programming

<table>
<thead>
<tr>
<th>ID</th>
<th>Tool name</th>
<th>R Packages</th>
<th>Specialized Scope</th>
<th>Mathematical Notation</th>
<th>Computational Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>T18</td>
<td>GraphPrism</td>
<td>—</td>
<td>✓*</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>T19</td>
<td>JASP</td>
<td>—</td>
<td>✓*</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>T20</td>
<td>JMP</td>
<td>—</td>
<td>✓*</td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>
Key findings

• Specialized tools require analysts to **consider computational settings while picking a statistical tool** and, possibly, even while mathematically relating their variables.

• Tools require analysts to match their conceptual hypotheses with the tools’ taxonomies, which may **misalign with their personal taxonomies**.
Misaligned taxonomies

SPSS

JMP
Key findings

• Specialized tools require analysts to **consider computational settings while picking a statistical tool** and, possibly, even while mathematically relating their variables.

• Tools require analysts to match their conceptual hypotheses with the tools’ taxonomies, which may **misalign with their personal taxonomies**.

• **Syntactic and semantic mismatches** can create a rift between model implementations and conceptual hypotheses.

• Low-level control could help but introduce a **gulf of evaluation**.
Implications

- High-level abstractions
- Co-authoring conceptual and statistical models
Conceptual Hypothesis

Sub-hypotheses

Proxy Variables

Causal Model

Dataset

Observations about Data

Mathematical Equation

Statistical Specification

Model Implementation

Hypothesis Refinement

Statistical Model Implementation
Schunn & Klahr 4-space model of scientific discovery
Research question

Conceptual Hypothesis

Sub-hypotheses

Proxy Variables

Causal Model

Dataset

Observations about Data

Mathematical Equation

Statistical Specification

Model Implementation

Outcomes

Conclusions
Tea:
A High-level Language and Runtime System for Statistical Analysis

Does caffeine consumption affect question asking?

Group A

Group B

Stats needed!
Does tea taste different with milk added before vs. after tea?

Which statistical test?

Fisher’s Exact Test!
Pearson’s r
Pointbiserial
Kendall’s T
Spearman’s p
Student’s t-test
Paired t-test
Mann-Whitney U
Wilcoxon signed rank
Welch’s F-test
Repeated measures
one-way ANOVA
Factorial ANOVA
Two-way ANOVA
Kruskal Wallis
Friedman
Fisher’s Exact
Linear regression
Logistic regression
MANOVA
ANCOVA
MANCOVA
McNemar
Chi Square
Research question

Conceptual Hypothesis

Proxy Variables

Causal Model

Dataset

Observations about Data

Mathematical Equation

Statistical Specification

Model Implementation

Conclusions

Outcomes

e.g.) t.test(x, y=NULL, alternative = c("two.sided", "less", "greater"), mu = 0, paired = FALSE, var.equal = FALSE, ...)
Research question

Conceptual Hypothesis

Sub-hypotheses

Proxy Variables

Causal Model

Dataset

Observations about Data

Mathematical Equation

Statistical Specification

Model Implementation

e.g.) t.test(x, y=NULL, alternative = c("two.sided", "less", "greater"), mu = 0, paired = FALSE, var.equal = FALSE, …)

Outcomes

Conclusions

tea abstracts away
Overview of Tea

What:
Tea is high-level.
Tea infers statistical tests.
Tea provides precise output.
Tea improves upon expert choices, prevents common mistakes.

Who:
Domain experts (not in stats!)
- Comfortable with study design
- Minimal programming

Tea helps domain experts conduct valid, replicable statistical analyses.

Replicable: Different team, same experimental setup; Same results
Tea:
How to use it
How it works
How it performs
Tea:
How to use it
How it works
How it performs
Test assumptions:
- Exactly two variables involved in analysis: So and Prob.
- Exactly one explanatory variable: So.
- Exactly one explained variable: Prob.
- Independent (not paired) observations.
- Variable is categorical.
- Variable has two categories.
- Continuous (not categorical) data: Prob.
- Equal variance.
- Groups are normally distributed.

NormalTest($W=0.8997463583946228$, $p\text{ value}=0.07962072640657425$)

Test results:
- name = Student’s T Test
- test_statistic = 4.20213
- adjusted p value = 0.00006
- alpha = 0.05
- dof = 45
- Effect size:
 - Cohen's $d = 1.24262$
 - $A_{12} = 0.83669$

Null hypothesis = There is no difference in means between $\text{So} = 0$ and $\text{So} = 1$ on Prob.
Interpretation = $t(45) = 4.20213$ $p = 0.00006$. Reject the null hypothesis at alpha = 0.05. The mean of Prob for $\text{So} = 1$ ($M=0.06371$ $SD=0.02251$) is significantly greater than the mean for $\text{So} = 0$ ($M=0.03851$ $SD=0.01778$). The effect size is Cohen's $d = 1.24262$ $A_{12} = 0.83669$. The effect size is the magnitude of the difference which gives a holistic view of the results [1].

Test: *students_t*

Test assumptions:
- Exactly two variables involved in analysis: So Prob
- Exactly one explanatory variable: So
- Exactly one explained variable: Prob
- Independent (not paired) observations: So
- Variable is categorical: So
- Variable has two categories: So
- Continuous (not categorical) data: Prob
- Equal variance: So Prob
- Groups are normally distributed: So Prob

NormalTest(W=0.8997463583946228 p_value=0.07962072640657425)

Test results:
- name = Student’s T Test
- test_statistic = 4.20213
- adjusted_p_value = 0.00006
- alpha = 0.05
- dof = 45

Effect size:
- Cohen’s d = 1.24262
- A12 = 0.83669

Null hypothesis = There is no difference in means between So = 0 and So = 1 on Prob.

Interpretation = t(45) = 4.20213 p = 0.00006. Reject the null hypothesis at alpha = 0.05. The mean of Prob for So = 1 (M=0.06371 SD=0.02251) is significantly greater than the mean for So = 0 (M=0.03851 SD=0.01778). The effect size is Cohen’s d = 1.24262 A12 = 0.83669. The effect size is the magnitude of the difference which gives a holistic view of the results [1].

import tea
tea.data('UScrime.csv')
variables = [
 {
 'name': 'Southern',
 'data type': 'nominal',
 'categories': ['No', 'Yes']
 },
 {
 'name': 'Probability',
 'data type': 'ratio',
 }
]
tea.define

// observational study,
contributor variables: 'Southern',
outcome variables: 'Probability',

assumptions = {
 'groups normally distributed':
 [['Southern', 'Probability']],
 'Type I (False Positive) Error Rate': 0.05
}
tea.assume(assumptions)

hypothesis = 'Southern:Yes > No'
tea.hypothesize([['Southern', 'Probability'], hypothesis])
```python
import tea
tea.data('UScrime.csv')
variables = [
    {
        'name': 'Southern',
        'data type': 'nominal',
        'categories': ['No', 'Yes']
    },
    {
        'name': 'Probability',
        'data type': 'ratio',
    }
]
tea.define_variables(variables)
study_design = {
    'study type': 'observational study',
    'contributor variables': 'Southern',
    'outcome variables': 'Probability',
}
tea.define_study_design(study_design)
assumptions = {
```
import tea
tea.data('UScrime.csv')

variables = [
 {
 'name': 'Southern',
 'data type': 'nominal',
 'categories': ['No', 'Yes']
 },
 {
 'name': 'Probability',
 'data type': 'ratio',
 }
]

tea.define_variables(variables)

study_design = {
 'study type': 'observational study',
 'contributor variables': 'Southern',
 'outcome variables': 'Probability',
}

tea.define_study_design(study_design)

assumptions = {
 'groups normally distributed':
 }

import tea
tea.data('UScrime.csv')
variables = [

 {'name': 'Southern',
 'data type': 'nominal',
 'categories': ['No', 'Yes']
 },

 {'name': 'Probability',
 'data type': 'ratio',
 }
]
tea.define_variables(variables)

study_design = {
 'study type': 'observational study',
 'contributor variables': 'Southern',
 'outcome variables': 'Probability',
}
tea.define_study_design(study_design)

assumptions = {
 'groups normally distributed':
 'distribution of Probability is all

{'data type': 'ratio',
}
]

tea.define_variables(variables)

study_design = {
 'study type': 'observational study',
 'contributor variables': 'Southern',
 'outcome variables': 'Probability',
}

tea.define_study_design(study_design)

assumptions = {
 'groups normally distributed':
 [['Southern', 'Probability']],
 'Type I (False Positive) Error Rate': 0.05
}

tea.assume(assumptions)

hypothesis = 'Southern:Yes > No'

tea.hypothesize(['Southern', 'Probability'], hypothesis)
contributor variables': 'Southern',
 'outcome variables': 'Probability',
}

tea.define_study_design(study_design)

assumptions = {
 'groups normally distributed':
 [['Southern', 'Probability']],
 'Type I (False Positive) Error Rate': 0.05
}

tea.assume(assumptions)

hypothesis = 'Southern:Yes > No'

tea.hypothesize([['Southern', 'Probability'], hypothesis])
hypothesis = 'Southern: Yes > No'

`tea.hypothesize(['Southern', 'Probability'], hypothesis)`
```python
import tea
tea.data('UScrime.csv')
variables = [
    {
        'name': 'Southern',
        'data type': 'nominal',
        'categories': ['No', 'Yes']
    },
    {
        'name': 'Probability',
        'data type': 'ratio',
    }
]
tea.define_variables(variables)
study_design = {
    'study type': 'observational study',
    'contributor variables': 'Southern',
    'outcome variables': 'Probability',
}
tea.define_study_design(study_design)
assumptions = {
    'groups normally distributed': [['Southern', 'Probability']],
    'Type I (False Positive) Error Rate': 0.05
}
tea.assume(assumptions)
hypothesis = 'Southern:Yes > No'
tea.hypothesize([['Southern', 'Probability'], hypothesis])
```
Tea:
How to use it
How it works
How it performs
Test selection as constraint satisfaction!

What are constraints?

- ✔ completeness
- ✔ syntax
- ✔ well-formed hypotheses

Nominal, Ordinal:
- Northern > Western
- Low SES < High SES

Ordinal, Ratio, Interval:
- SES ~ Income
- Age ~ - Income

Pearson’s r
- Pointbiserial,
- Kendall’s T,
- Spearman’s p,
- Student’s t-test,
- Paired t-test,
- Mann-Whitney U,
- Wilcoxon signed rank,
- Welch’s,

F-test,
- Repeated measures
- one-way ANOVA,
- Factorial ANOVA,
- Two-way ANOVA,
- Kruskal Wallis,
- Friedman,
- Chi Square,
- Fisher’s Exact,
- Bootstrapping

Test: students_t
- Test assumptions:
 - Exactly two variables involved in analysis: So, Prob
 - Exactly one explanatory variable: So
 - Exactly one explained variable: Prob
 - Independent (not paired) observations: So
 - Variable is categorical: So
 - Variable has two categories: So
 - Continuous (not categorical) data: Prob
 - Equal variance: So, Prob
 - Groups are normally distributed: So, Prob

Test results:
- name = Student’s T Test
- test_statistic = 4.20213
- p_value = 6.182448633266387e-05
- alpha = 0.05
- dof = 45
- Effect size:
 - Cohen’s d = 1.2426167296374897
 - A12 = 0.8366935483870968

- Null hypothesis = There is no difference in means between 0 and 1 on Prob.
- Interpretation = t(45) = 4.202130736875173, 6.182448633266387e-05. Reject the null hypothesis at alpha = 0.05. The mean of Prob for So = 1 is significantly greater than the mean for So = 0. The effect size is "Cohen’s d": 1.2426167296374897, 'A12': 0.8366935483870968. The effect size is the magnitude of the difference, which gives a holistic view of the results [1].

import tea

tea.data('UScrime.csv')

variables = [
 {
 'name': 'Southern',
 'data type': 'nominal',
 'categories': ['No', 'Yes']
 },
 {
 'name': 'Probability',
 'data type': 'ratio',
 }
]

tea.define_variables(variables)

study_design = {
 'study type': 'observational study',
 'contributor variables': 'Southern',
 'outcome variables': 'Probability',
}

tea.define_study_design(study_design)

assumptions = {
 'groups normally distributed': False,
 'Type I (False Positive) Error Rate': 0.05
}

tea.assume(assumptions)

hypothesis = 'Southern:Yes > No'

tea.hypothesize(['Southern', 'Probability'], hypothesis)
import tea
tea.data('UScrime.csv')
variables = [
 {'name': 'Southern',
 'data type': 'nominal',
 'categories': ['No', 'Yes']
 },
 {'name': 'Probability',
 'data type': 'ratio',
 }
]
tea.define_variables(variables)
study_design = {
 'study type': 'observational study',
 'contributor variables': 'Southern',
 'outcome variables': 'Probability',
}
tea.define_study_design(study_design)
assumptions = {
 'groups normally distributed':
 [['Southern', 'Probability']],
 'Type I (False Positive) Error Rate': 0.05
}
tea.assume(assumptions)
hypothesis = 'Southern:Yes > No'
tea.hypothesize(['Southern','Probability'],hypothesis)

Student’s t-test \checkmark \times

Exactly 2 groups \checkmark \checkmark

Groups are normally distributed \checkmark \checkmark
import tea
tea.data('UScrime.csv')
variables = [
 {'name': 'Southern',
 'data type': 'nominal',
 'categories': ['No', 'Yes']
 },
 {'name': 'Probability',
 'data type': 'ratio',
 }
]
tea.define_variables(variables)
study_design = {
 'study type': 'observational study',
 'contributor variables': 'Southern',
 'outcome variables': 'Probability',
}
tea.define_study_design(study_design)
assumptions = {
 'groups normally distributed':
 [['Southern', 'Probability']],
 'Type I (False Positive) Error Rate': 0.05
}
tea.assume(assumptions)
hypothesis = 'Southern:Yes > No'
tea.hypothesize(['Southern', 'Probability'], hypothesis)
Why constraints?

- How many outcome variables?
- What type of outcome?
- How many predictor variables?
- What type of predictor?
- If a categorical predictor, how many categories?
- If a categorical predictor, are the same or different entities in each category?

Assumptions of parametric tests met

Assumptions of parametric test not met

Benefits of Tea’s Implementation

Extensibility
Support new statistical tests

New test \leftrightarrow
- `bivariate(x,y)`
- `one_x_variable(x,y)`
- `one_y_variable(x,y)`
- `independent_obs(x,y)`
- `categorical(x)`

* Tea supports more tests than Statsplorer [Wacharamanotham et al. 2015]

Flexibility
Evolve with statistical best practices

- $N < 200$
 - $w = .7$ `normal_distribution(x)`
 - $w = .3$ `equal_variance(x,y)`

- $N \geq 200$
 - $w = .4$ `normal_distribution(x)`
 - $w = .6$ `equal_variance(x,y)`
Tea:

How to use it

How it works

How it performs
Initial Evaluation

How does Tea compare to experts?

12 tutorials

code snippets + text

Replicate 9

Improve 3

How does Tea compare to novices?

data

Avoid common mistakes and false conclusions
Vision: Democratize data science

Lower the barrier to statistical analysis

Reimagine the ecosystem of tools
Tosch et al. 2019, Bakshy et al. 2014

End-to-end support for iterative data analysis

Tea programs for pre-registration

- Idiosyncratic
- Manual checking

+ Consistent
+ Verifiable
+ Executable
www.tea-lang.org

pip install tealang

Eunice Jun @eunicemjun
Maureen Daum
Jared Roesch
Sarah Chasins
Emery Berger
Rene Just
Katharina Reinecke
Limitations with Tea

• Language design
• Implicit conceptual model
• More complex hypotheses
• More complex statistical analyses required
Tisane:
Authoring Statistical Models via Formal Reasoning from Conceptual and Data Relationships

E. Jun, Audrey Seo, Jeffrey Heer, René Just. ACM CHI 2022.
Tisane: Authoring Statistical Models via Formal Reasoning from Conceptual and Data Relationships

Eunice M. Jun, Audrey Seo, Jeffrey Heer, and René Just | @eunicemjun, emjun@cs.washington.edu

Interactive compilation

```python
import tisane as ts

adult = ts.Unit("adult", cardinality=386)
motivation = adult.numeric("motivation")
pounds_lost = adult.numeric("pounds_lost")
age = adult.numeric("age")
group = ts.Unit("group", cardinality=48)
condition = group.nominal("treatment", cardinality=2)

adult.nests_within(group)
condition.causes(pounds_lost)
motivation.associates_with(pounds_lost)
age.associates_with(pounds_lost)
age.associates_with(motivation)
```

```r
glm(y ~ x1 + x2, family=gaussian())
```

pip install tisane
github.com/emjun/tisane

install.packages("tisaner")
github.com/emjun/tisaner
Come to my generals talk on Monday, March 14 at 2pm PT!
Discussion
#1. Cross-disciplinary teams
#2. Mixed, not staged, process
#3. Qual + Systems + Quant
#4. Highly iterative!
#5. Do people really care?
Outline

- Initial inspiration
- **Hypothesis formalization** (empirical work + theory building)
- **Tea** (system)
- **Tisane** (system)
- Discussion
Two lenses:

#1.
Programs are UIs.
Programming is HCI.

#2.
PL = Representation
HCl = Interaction
Tisane: Authoring Statistical Models via Formal Reasoning from Conceptual and Data Relationships

E. Jun, Audrey Seo, Jeffrey Heer, René Just. ACM CHI 2022.
Scenario: How does exercise affect weight loss?

Adapted from Cohen et al. 2013
Scenario: How does exercise affect weight loss?

386 females

 adapté from Cohen et al. 2013

= approx. 100 females
Scenario: How does exercise affect weight loss?

386 females

40 groups

Group 1 Group 40

= approx. 100 females

Adapted from Cohen et al. 2013
Scenario: How does exercise affect weight loss?

- 386 females
- 40 groups
- 2 conditions

Group 1... Group 40

Experimental regimen
Control regimen

 adapté from Cohen et al. 2013

♀ = approx. 100 females
Scenario: How does exercise affect weight loss?

386 females

40 groups

2 conditions

- Experimental regimen
 - + motivation scores
 - + pounds lost
 - + age

- Control regimen

Adapted from Cohen et al. 2013
Scenario: How to analyze the data?

386 females

40 groups

2 conditions

Experimental regimen + motivation scores + pounds lost + age

Control regimen
Scenario: How to analyze the data?

Which independent variables should we include?
- Condition
- Motivation
- Condition+Motivation
- Condition+Group
- ???

Do we include interaction effects?
- Condition*Motivation
- Condition*Age
- Condition*Motivation*Group
- ???

How do we account for grouping?
- Fixed effect?
- Random effect?
- Does it matter???

What type of linear model should we use?
- Linear regression
- Logistic regression
- Mixed-effects model
- ???
Domain

Data

Statistics
glm(y ~ x1 + x2, family=gaussian())
Tisane enables users to

(i) express + leverage existing knowledge and
(ii) ensure alignment of considerations.

\texttt{glm(y \sim x1 + x2, family=gaussian())}
Tisane

Study design specification language

Model generation + Disambiguation

Final model output

\[
\text{glm}(y \sim x_1 + x_2, \text{family=} \text{gaussian}())
\]
Tisane

Interactive compilation
Study design specification language
Model generation + Disambiguation
Final model output

glm(y \sim x1 + x2, family=gaussian())
Brew a Tisane program

import tisane as ts

adult = ts.Unit("adult", cardinality=386)

group = ts.Unit("group", cardinality=40)
import tisane as ts

def main():
 adult = ts.Unit("adult", cardinality=386)
 motivation = adult.numeric("motivation")
 pounds_lost = adult.numeric("pounds_lost")
 age = adult.numeric("age")
 group = ts.Unit("group", cardinality=40)
 condition = group.nominal("treatment", cardinality=2)
import tisane as ts

adult = ts.Unit("adult", cardinality=386)
motivation = adult.numeric("motivation")
pounds_lost = adult.numeric("pounds_lost")
age = adult.numeric("age")
group = ts.Unit("group", cardinality=40)
condition = group.nominal("treatment", cardinality=2)
adult.nests_within(group)
Brew a Tisane program

```python
import tisane as ts

adult = ts.Unit("adult", cardinality=386)
motivation = adult.numeric("motivation")
pounds_lost = adult.numeric("pounds_lost")
age = adult.numeric("age")
group = ts.Unit("group", cardinality=40)
condition = group.nominal("treatment", cardinality=2)
adult.nests_within(group)

condition.causes(pounds_lost)
motivation.associates_with(pounds_lost)
age.associates_with(pounds_lost)
age.associates_with(motivation)
```
Brew a Tisane program

```python
import tisane as ts

adult = ts.Unit("adult", cardinality=386)
motivation = adult.numeric("motivation")
pounds_lost = adult.numeric("pounds_lost")
age = adult.numeric("age")
group = ts.Unit("group", cardinality=40)
condition = group.nominal("treatment", cardinality=2)

adult.nests_within(group)
condition.causes(pounds_lost)
motivation.associates_with(pounds_lost)
age.associates_with(pounds_lost)
age.associates_with(motivation)

design = ts.Design(dv=pounds_lost,
                   ivs=[condition, motivation])
                      .assign_data("data.csv")

ts.infer_model(design=design)
```
Need user input

Which independent variables should we include?
Check, infer based on graph.
Is age part of the user’s research question?

Do we include interaction effects?

Look for moderating relationships.

How do we account for grouping?

Infer maximal random effects to maximize generalizability.
Correlated slope and intercept?

What type of linear model should we use?

Infer possible residual distributions from variable data types.
What will the data look like?
Disambiguation

*Jupyter notebook not required, also runs outside!

```python
In [1]: import tisane as ts

import pandas as pd
import numpy as np
import os

Load data

In [2]: df = pd.read_csv("exercise_group_age_added.csv")

Specify variables

In [3]: import tisane as ts

adult = ts.Unit("member", cardinality=386)
motivation = adult.numeric("motivation")
pounds_lost = adult.numeric("pounds_lost")
age = adult.numeric("age")

group = ts.Unit("group", cardinality=40)
condition = group.nominal("treatment", cardinality=2)

Specify relationships

In [4]: adult.nests_within(group)

condition.causes(pounds_lost)
motivation.associates_with(pounds_lost)
age.associates_with(motivation)
```
Final model: Avoid common mistakes.

\[\text{pounds}_\text{lost} \sim \text{motivation} + \text{treatment} + (1|\text{group}) \]

Conceptually founded, maximal random effects

\[\text{pounds}_\text{lost}\sim\text{motivation}+\text{treatment} \]

Overlook groups, inflate statistical power

\[\text{pounds}_\text{lost}\sim\text{motivation}+\text{treatment} + \text{group} \]

“Ecological fallacy,” inflate statistical power

\[\text{pounds}_\text{lost}\sim\text{group}_\text{motivation}+\text{group}_\text{treatment} \]

Average across groups, deflate statistical power
Tisane

Interactive compilation
Study design specification language
Model generation + Disambiguation
Final model output

Domain
Data
Statistics

$$\text{glm}(y \sim x1 + x2,\ family=\text{gaussian}())$$
Case studies:

- Psychology
- HCI
- Health policy
“...in terms of I don't know [what] I was exactly picking, because there's like, what is it like 'poisson regression' or whatever, right. And like, you have to pick these things in SPSS. And like, I honestly, admittedly did not really look into which I should have been picking, but I just had one of his previous students [who] was like, ‘This is what I did. So you should just do that.’...these are like, major gaps....[Tisane] fills in a lot of gaps in that, in that sense, in the sense of like, I think one of the biggest issues for psychologists is like what tests to run? And I don't think anyone ever has a very good answer.”

“I think that like, like, so close to a deadline, it's a little bit unnerving to be like, ‘Oh, f*ck what I just wrote about could be incorrect.’ And then also, it's like, but also, if it's incorrect, I should know before I submit. So I feel like a little bit of that tension with it....And now I like know, of some stuff I didn't know about before.”

“But what I think I could use...to help fill that gap in my knowledge, and some of the places where I'm not sure about how to set things up....if we're interested in linear models with mixed effects, then this seems like it would do it.”
Case studies: Cognitive fixation

“Yeah, I keep [study design] in my head, which I probably shouldn't. And that when I, I guess, run tests, I just, I only plop in the variables I'm looking at at that moment.”

“[Tisane] would be interesting in any of those cases, because it would help you explore your relationships pretty easily would help you, you know, fit a really simple model, but in the best way you can. So if I say, ‘Hey, like here, I want these things in there,’ [Tisane] would be like, ‘Well, you know, I guess you know, here’s probably a good way to set that up.’ And then you could kind of easily get some plots that you don't need to write code for.”

“Okay, so I think that in this case, what I want to add is that each of the independent variables causes dissociation. I'm actually not sure. Is it possible? Or is that just correlated… I don't feel comfortable. We can just say it's associated.”
But is there yet anywhere that you might be able to specify, like, I want to control for this and not have a factor into really like this relationship? Or I guess I want to factor in but insofar as it's acts as a control and not as like a real variable."

"...the only thing that feels like a little difficult is, like, knowing the number of instances. I don't know why I was like, 'What does this mean?' And again, I think that's because I did a DSM [Diary Study Method], where like, it is pretty variable. And we were using logs, which also like, can vary so much between the different users."

"...make the app more able to be run without like the mouse....you could run this 2000 times in the parallel session....[T]he benefit of this isn't just that it spits out the best model for you. It's also that it's exploratory, you know, what I mean? So, it could be useful in an exploratory way, just for... like, you know, I can look at one model and kind of infer that the others are similar and do some spot checking as well. Definitely seems like a good first place to go."
Tisane: Authoring Statistical Models via Formal Reasoning from Conceptual and Data Relationships

Eunice M. Jun, Audrey Seo, Jeffrey Heer, and René Just | @eunicemjun, emjun@cs.washington.edu

Interactive compilation

```python
import tisane as ts

adult = ts.Unit("adult", cardinality=386)
motivation = adult.numeric("motivation")
pounds_lost = adult.numeric("pounds_lost")
age = adult.numeric("age")
group = ts.Unit("group", cardinality=48)
condition = group.nominal("treatment", cardinality=2)

adult.nests_within(group)
condition.causes(pounds_lost)
motivation.associates_with(pounds_lost)
age.associates_with(pounds_lost)
age.associates_with(motivation)
```

Python

```
pip install tisane
github.com/emjun/tisane
```

R

```
install.packages("tisaner")
github.com/emjun/tisaner
```